A drug-compatible and temperature-controlled microfluidic device for live-cell imaging Chen T, Gomez-Escoda B, Munoz-Garcia J, Babic J, Griscom L, Wu PY, and Coudreuse D Open Biology 6:160156



Abstract   Download PDF

Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging.

Replication origin selection regulates the distribution of meiotic recombination Wu PY and Nurse P Molecular Cell 53:655-662



Abstract   Download PDF

The program of DNA replication, defined by the temporal and spatial pattern of origin activation, is altered during development and in cancers. However, whether changes in origin usage play a role in regulating specific biological processes remains unknown. We investigated the consequences of modifying origin selection on meiosis in fission yeast. Genome-wide changes in the replication program of premeiotic S phase do not affect meiotic progression, indicating that meiosis neither activates nor requires a particular origin pattern. In contrast, local changes in origin efficiencies between different replication programs lead to changes in Rad51 recombination factor binding and recombination frequencies in these domains. We observed similar results for Rad51 when changes in efficiencies were generated by directly targeting expression of the Cdc45 replication factor. We conclude that origin selection is a key determinant for organizing meiotic recombination, providing evidence that genome-wide modifications in replication program can modulate cellular physiology.