














observed major changes in the replication program compared to
that in wild type (Supplemental Fig. S5B).We then assessed the re-
gional profile of DNA replication by ascertaining average origin ef-
ficiencies in continuous 1000-probe windows, as for Figure 1C,
and found that the characteristic differences between efficiency
domains in wild-type cells are strongly attenuated in rif1Δ (Fig.

5A). This background thus represents
an ideal system for testing our model:
If the replication program delimits the
regions where the checkpoint inhibits
origin firing in replication stress condi-
tions, we would predict that inappropri-
ate replication initiation in a rif1Δ rad3Δ
mutant would no longer be enriched in
the same genomic domains as in rad3Δ.

We therefore analyzed the impact of
the altered replication program in rif1Δ
cells on origin de-regulation, comparing
efficiencies in rif1Δ rad3Δ and rif1Δ cells
arrested in G2 and allowed to synchro-
nously enter S phase in 6 mM HU (Fig.
5B; Supplemental Fig. S5C). Applying
the same 8% threshold as for CIOs, we
identified 170 de-regulated origins in
rif1Δ rad3Δ cells that we will refer to as
rif1-CIOs (Fig. 5B; Supplemental Tables
S4, S5). These rif1-CIOs also span a broad
spectrum of activities (Supplemental Fig.
S5D). However, in contrast to CIOs, rif1-
CIOs are more uniformly positioned
along the chromosomes and no longer
clustered in distinct domains (Fig. 5C;
Supplemental Fig. S5C); this reflects the
“flattened” replication profile in rif1Δ.
Notably, a large number of rif1-CIOs
are found in regions that lack CIOs in
rad3Δ. These findings demonstrate that
inappropriate origin activation does not
occur as a result of the chromosomal con-
text but rather as a consequence of the
program of DNA replication.

Changes in origin de-regulation

redistribute hotspots of Rad52

recruitment

We next determined whether the chang-
es in origin de-regulation in checkpoint-
deficient rif1Δ cells treated with HU
are accompanied by a redistribution in
Rad52 recruitment. To this end, rif1Δ
and rif1Δ rad3Δ cells were allowed to syn-
chronously enter S phase in 6 mM HU,
and Rad52 binding was assessed by
ChIP-chip 90 min after the release,
when we observed high levels of Rad52
recruitment at a representative rif1-CIO
(Supplemental Fig. S6A). First, our results
in rif1Δ cells showed that this mutation
itself does not induce either high levels
of Rad52 binding compared to wild
type (Supplemental Fig. S6B) or Rad52 re-

cruitment at origins (Supplemental Fig. S6C). Importantly, we
found a genome-wide increase in Rad52 binding in HU-treated
rif1Δ rad3Δ cells compared to rif1Δ (Fig. 6A; Supplemental Fig.
S6D). Heat map analyses revealed a clear enrichment of Rad52 at
a number of origins in rif1Δ rad3Δ that was not detected in rif1Δ
(Fig. 6B, +HU). Although our 8% efficiency cutoff identified only

A

B

Figure 4. The profile of origin de-regulation delineates the profiles of RPA and Rad52 binding in rep-
lication stress. (A) Genome-wide comparisons of origin de-regulation and genome instability. This anal-
ysis takes into account all 876 identified origins as well as all RPA and Rad52 binding sites. The sum of the
changes in origin efficiencies upon HU treatment (rad3Δ−WT, red) was determined in continuous 1000-
probe windows. The densities of RPA (orange) and Rad52 (blue) sites were calculated for HU-treated
rad3Δ cells over the same windows. x-axis: chromosome coordinates; y-axes: sum of the differences in
origin efficiencies (top), density of RPA sites (middle), density of Rad52 sites (bottom). The Spearman’s cor-
relation coefficients (ρ) for the different comparisons are indicated and show strong positive correlations.
(∗∗∗) P-value < 0.001. (B) Relationship between the wild-type replication program, the checkpoint regu-
lation of origin firing, and genome instability during replication stress. The Spearman’s correlation coef-
ficients are indicated. (∗∗∗) P-value < 0.001. Top: The profile of average origin efficiencies in wild-type cells
as in Figure 1C (black, left y-axis) is displayed together with the sum of the changes in origin usage as in A
(rad3Δ−WT, red, right y-axis). x-axis: chromosome coordinates. These two parameters show a strong
negative correlation. Bottom: A strong negative correlation is also observed between the replication
program (black, left y-axis) and the density of Rad52 (blue, right y-axis, as in A along the chromosomes.
x-axis: chromosome coordinates.
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a subset of these sites as rif1-CIOs, we established a clear positive
correlation between the increases in origin efficiencies in rif1Δ
rad3Δ and the changes in Rad52 binding (Fig. 6C), indicating high-
er levels of recruitment at rif1-CIOs. Building on these findings, we

then determined the extent to which inappropriate initiation con-
tributes to Rad52 hotspots in these cells. Using the same criteria as
for our previous analyses (Supplemental Fig. S3H), we identified
618 sites of Rad52 binding in HU-treated rif1Δ rad3Δ cells com-
pared to 94 in rif1Δ. Similar to our observations for CIOs in
rad3Δ, 62% of the 170 rif1-CIOs coincide with Rad52 hotspots in
rif1Δ rad3Δ, and 67% of all Rad52 loci are, in fact, associated
with origins (Supplemental Fig. S6E). Together with Figure 6C,
which exposes a strong correlation between origin de-regulation
and Rad52 accumulation even for origins that were not initially
identified as rif1-CIOs, these results indicate that inappropriate ini-
tiation is a major source of genome instability hotspots in rif1Δ
rad3Δ cells exposed to replication stress.

Given the large number of Rad52 binding sites in HU-treated
rif1Δ rad3Δ cells, we addressed the possibility that the altered origin
usage program in a rif1Δ background generates a sensitized state in
which cells experience replication stress even during an unper-
turbed S phase. To this end, we ascertained Rad52 binding in syn-
chronized rif1Δ and rif1Δ rad3Δ cells that proceeded through S
phase in the absence of HU, taking the same time point (90 min)
as for Figure 6A. Heat map analyses of data from both strains
showed that in these conditions, Rad52 is not enriched at either
unaffected origins or rif1-CIOs (Fig. 6B, −HU). Indeed, in contrast
to HU-treated rif1Δ rad3Δ cells, where 62% of rif1-CIOs overlap
with Rad52 sites, only 10% of rif1-CIOs coincide with Rad52 loci
in a normal S phase (Supplemental Fig. S6E). These data therefore
suggest that the altered replication program in rif1Δ is not intrinsi-
cally problematic and that absence of the checkpoint in this con-
text does not give rise to origin-associated DNA damage.

Finally, we evaluated the overall impact of reprogramming
DNA replication on the landscape of genome instability. We com-
pared the density of Rad52 hotspots over continuous 1000-probe
windows in rif1Δ rad3Δ and rad3Δ cells in the absence and presence
of HU. In an unperturbed S phase, this pattern was highly similar
between the two strains (Fig. 6D, bottom panel), implying that the
rif1Δmutation itself does not induce a significant alteration of the
Rad52 profile in a sensitized, checkpoint-defective background. In
replication stress conditions, Rad52 sites in rif1Δ rad3Δ cells were
no longer clustered in the same distinct genomic domains as in
rad3Δ (Fig. 6D, top panel), revealing a complete redistribution of
Rad52 loci.

Taken together, these findings support our model that in-
duced alteration of the replication program in checkpoint-defec-
tive cells subjected to replication stress leads to changes in the
pattern of de-regulated replication initiation as well as associated
genome instability events.

Discussion

In this study, we have identified a fundamental role for the pro-
gram of genome duplication in themaintenance of genome stabil-
ity. Our results demonstrate that, in checkpoint-defective cells
subjected to replication stress, the significant de-regulation of
Rad3/ATR-inhibited origins is clustered in late-replicating and in-
efficient genomic domains. We show that this selective regulation
of origin usage by the checkpoint is directly and quantitatively
governed by the program of genome duplication, regardless of
the individual characteristics of these origins. We observe a strong
correlation between the extent of origin de-regulation and the lev-
els of RPA and Rad52 binding at these loci. These inappropriate or-
igin firing events represent a major source of the genome-wide
complement of Rad52 hotspots, and the distinctive localization
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Figure 5. Modulation of the replication program results in redistribution
of de-regulated origins. (A) Profiles of replication efficiency domains in
cdc25-22 (WT, black, as in Fig. 1C) and cdc25-22 rif1Δ (rif1Δ, blue) cells.
Cells were arrested in G2 and released to undergo S phase in 6 mM HU.
The averages of origin efficiencies in each background were assessed for
continuous 1000-probe windows. Horizontal lines: average origin efficien-
cy genome-wide. x-axis: chromosome coordinates; y-axes: average origin
efficiencies. The full maps of origin usage are shown in Supplemental
Figure S5B. (B) Origin efficiencies in a representative region of the genome
for rif1Δ (black) and rif1Δ rad3Δ (green) cells synchronized in G2 using the
cdc25-22mutation and released into 6mMHU. Asterisks: rif1-CIOs. Full ef-
ficiency maps are in Supplemental Figure S5C. x-axis: chromosome coor-
dinates; y-axis: origin efficiencies. (C) Comparison of the distribution of
de-regulated origins: rif1-CIOs (rif1Δ rad3Δ, green bars) vs. CIOs (rad3Δ,
red bars). x-axis: chromosome coordinates.
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of these sites delineates a signature profile of genome instability.
Finally, modulation of the replication program using a rif1Δ mu-
tant background leads to an entirely altered pattern of origin de-
regulation in checkpoint-defective cells subjected to replication
stress. In this context, the link between unscheduled initiation
andRad52 accumulation is neverthelessmaintained, which results
in a genome-wide redistribution of problematic loci. Our work
therefore provides novel evidence that the organization of DNA
replication establishes the landscape of checkpoint-regulated ori-
gin firing and shapes genome instability along the chromosomes.

The results of our study have critical implications for the cel-
lular response to genotoxic insults. While previous investigations
focused on the targeting of late-firing and inefficient origins, with
work in budding yeast showing that such sites are not fired when

the checkpoint is functional (Poli et al.
2012), our data reveal that individual or-
igins with a broad range of efficiencies
and firing times are, in fact, subject to
checkpoint inhibition. Our findings are
compatible with an earlier study in
which origins repressed by the check-
point in HU eventually fire after a long
period of time, hinting that the check-
point does not specifically control a dis-
tinct set of late-firing origins (Alvino
et al. 2007). In particular, we establish
that, in nucleotide-depleted rad3/ATR
mutants, the number of de-regulated ori-
gins in a region and the changes in their
efficiencies are directly coupled to the
characteristics of replication efficiency
and timing domains. In addition, in the
context of the stochasticity in replication
initiation observed in DNA combing as-
says (Patel et al. 2006; Czajkowsky et al.
2008; Kaykov and Nurse 2015), we do
not interpret our results to imply that ev-
ery origin in late-replicating domains is
de-regulated in each cell, but rather that
there is a higher frequency of inappropri-
ate initiation in these regions. Our data
reveal that the control of origin usage
by the Rad3/ATR pathway in replication
stress conditions is a key aspect of its
function in genome maintenance. Our
work also presents compelling evidence
for a fundamental biological importance
of the replication program in genome
surveillance, which may help to eluci-
date the rationale for the pattern of
DNA replication in wild-type cells.
For example, particular programs may
lead to elevated local concentrations of
checkpoint factors that would protect
at-risk regions through more efficient
signaling (Rivera-Mulia et al. 2015).
This may favor the repression of neigh-
boring sites and also locally enhance
DNA repair processes. Complementary
to this, there may also have been evolu-
tionary selection for an arrangement in
which potential sites of DNA damage

are enriched in regions where mutations have a lower likelihood
to be deleterious.

Although we have focused on the regulation of replication
initiation in stress conditions, our findings may also be applicable
to an S phase that is not subjected to pathological replication
stress. Indeed, cells can encountermultiple challenges toDNA syn-
thesis even in “unperturbed” conditions (Zeman and Cimprich
2014). For instance,markers of genotoxic stress are detected during
replication in embryonic stem cells (Ahuja et al. 2016), and ATR
function is essential in other eukaryotic systems (Eykelenboom
et al. 2013). In addition, replication stress may be induced by the
dependence of DNA synthesis on limiting factors that include
components of the replication machinery (Cdc45, Sld2, and
Sld3) (Wu and Nurse 2009; Mantiero et al. 2011; Tanaka et al.
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Figure 6. Alteration of the replication program results in genome-wide changes in Rad52 accumula-
tion. (A–D) rif1Δ and rif1Δ rad3Δ cells were synchronized using cdc25-22 and released in 6mMHU except
where indicated. (A) Rad52 binding and origin usage in a representative region of the genome. Top: pro-
files of Rad52 recruitment in rif1Δ (gray) and rif1Δ rad3Δ (orange). The full Rad52 profiles are in
Supplemental Figure S6D, top panel. y-axis: Rad52 binding (IP/input). Bottom: origin efficiencies for
rif1Δ (black) and rif1Δ rad3Δ (green). Asterisks mark rif1-CIOs. y-axis: origin efficiency. The full origin ef-
ficiency profiles are in Supplemental Figure S5C. x-axis for top and bottom: chromosome coordinates.
(B) Heat maps of Rad52 binding centered on origins in rif1Δ and rif1Δ rad3Δ cells treated with 6 mM
HU (left, +HU) or in the absence of HU (right, −HU). Presentation is as in Figure 3B. Note that, as in
Figure 3B, there are a few red horizontal lines in rif1Δ rad3Δ in –HU; these represent high levels of
Rad52 recruitment to the end of the right arm of Chromosome III (Supplemental Fig. S6D), which we
have not further investigated in this study. (C ) Correlation between changes in origin usage and in
Rad52 binding between rif1Δ rad3Δ and rif1Δ cells. Analysis is as in Figure 3D. x-axis: difference in origin
efficiency; y-axis: difference in Rad52 binding. (D) Density of Rad52 sites in rif1Δ rad3Δ (purple) vs. rad3Δ
(blue, as in Fig. 4A) calculated over continuous 1000-probe windows. Top panel: +HU; bottom panel:
−HU. x-axis: chromosome coordinates; y-axes: density of Rad52 sites.
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2011) as well as those that are critical for efficient replication, such
as RPA (Toledo et al. 2013). dNTPs are also limiting during genome
duplication: The existing pool of dNTPs at G1/S is insufficient to
complete replication, and the ribonucleotide reductase (RNR) is in-
duced to produce the necessary nucleotides (Poli et al. 2012;
Guarino et al. 2014). However, while there are multiple potential
sources of challenges to replication during a normal S phase, we
do not find Rad52 recruitment to origins in the absence of HU
treatment in our experimental context. Nevertheless, it is possible
that, in this situation, cells experience only mild intrinsic levels
of stress, making inappropriate initiation events relatively rare
and difficult to monitor using our short-term population-level
analyses. Indeed, there are indications that the organization of
DNA replicationmayhave long-term consequences for genome ar-
chitecture andmaintenance. For instance, our demonstration that
origins are hotspots of genome instability when inappropriately
fired in stress conditions is consistent with comparative genomic
analyses and laboratory evolution experiments in budding yeast
that have colocalized breakpoints for gene amplifications and
chromosome rearrangements with origins (Di Rienzi et al. 2009;
Gordon et al. 2009). Our results also hint at a mechanism for
how the replication program may delineate differences in the
types and rates of mutations that have been associated with repli-
cation timing (Lang andMurray 2011; Liu et al. 2013). Altogether,
these possibilities have important implications for the processes
that shape the genome during its evolution.

Finally, our studies may bring insight into themutations that
accumulate when DNA synthesis is perturbed in pathological situ-
ations, such as in cancer. Early tumorigenesis is associated with
replication stress and nucleotide deficiencies (Halazonetis et al.
2008; Bester et al. 2011), and a haploinsufficiency of ATR or
Chk1 has been shown to contribute to cancer predisposition
(Brown and Baltimore 2000; Lam et al. 2004). Furthermore, cancer
cells have been found to display altered patterns of origin usage
(Donley and Thayer 2013). Our experimental conditions therefore
recapitulatemanyof these features, and our results suggest that the
replication program may be responsible for the differential sus-
ceptibility of distinct genomic regions to the accumulation of
DNA damage in these contexts. Our conclusions may thus inform
the current understanding of how the cancer mutational land-
scape arises, with consequences for somatic evolution and for
the heterogeneity found in individual tumors.

While our previous work coupled origin selection with pro-
grammed recombination in the context of the specialized meiotic
cycle (Wu andNurse 2014), our new findings demonstrate that the
replication program has a broader and more fundamental role in
cellular biology through regulating the surveillance pathways
that ensure the fidelity of the genetic material. The conservation
of themechanisms for DNA replication and checkpoint regulation
from yeast to human suggest that this critical function of the orga-
nization of genome duplication in genomemaintenance may also
extend to more complex eukaryotic systems.

Methods

Strains and cell growth

Standard media and methods for fission yeast were used (Moreno
et al. 1991; Hayles and Nurse 1992). Cells were grown in minimal
medium supplemented with 250 mg/L adenine, histidine, lysine,
uracil, leucine, and arginine (EMM6S). Supplemental Table S6 lists
the fission yeast strains used in this study. The following construc-

tions were previously generated: Cdc45-YFP (Gregan et al. 2003),
rad3Δ::ura4 (gift from the Nurse Lab), and Polδ-Flag (Taricani and
Wang 2006). Deletions and tagged proteins (rad3Δ::kanMX,
rif1Δ::natMX, Ssb1-HA) were constructed by homologous recombi-
nation (Bähler et al. 1998). The JW129 and JW131 strains were
used for the origin mapping and ChIP-qPCR experiments in
Figure 1 and Supplemental Figure S1. JW133 and JW135 were
used for the Ssb1/RPA ChIP-chip experiments (Fig. 2; Supplemen-
tal Fig. S2). PN292 and JW154 were used for the Rad52 ChIP-chip
experiments (Fig. 3; Supplemental Fig. S3). JW1183 and JW1184
were used for both the origin mapping and Rad52 ChIP-chip
experiments in a rif1Δ background (Figs. 5, 6; Supplemental Figs.
S5, S6). PN2483 and JW1135were used for determination of origin
efficiencies after synchronization with nda3-km311 (Supple-
mental Fig. S1). PN1 and PN1400 were used for validation of
copy number experiments (Supplemental Fig. S7).

Cell cycle synchronization

Strains with the cdc25-22 mutation were grown at the permissive
temperature (25°C) to a density of ∼2 × 106 cells/mL before being
shifted to the restrictive temperature (36.5°C) for 4 h, leading to
G2 arrest (Forsburg and Rhind 2006). Subsequent release to 25°C
by rapid cooling of the culture results in synchronous entry into
mitosis and S phase. For nda3-km311 strains, cells were grown in
exponential phase at 32°C to a density of ∼2 × 106 cells/mL and
shifted to 18°C for 6 h to induce mitotic arrest (Hiraoka et al.
1984). Release to 32°C results in synchronous re-entry into the
cell cycle.

Flow cytometry

Cells were fixed in 70% cold ethanol, washed in 50mMsodiumcit-
rate, and treated with RNase A (0.1 mg/mL) at 37°C. Samples were
then stained using 2 mg/mL propidium iodide, sonicated with a
Branson digital sonifier, and run on a BDAccuri C6 flow cytometer
(BD Biosciences). Data were analyzed using the FlowJo software.
Details for the interpretation of flow cytometry profiles in the fis-
sion yeast are provided in the Supplemental Materials.

Chromatin immunoprecipitation

ChIP experiments were performed as previously described (Wu
and Nurse 2009). Cells were fixed with 1% formaldehyde, lysed
in a FastPrep cell disruptor (MP Biomedicals), and sonicated with
a Bioruptor Plus (Diagenode) to obtain chromatin fragments of
∼400–500 bp. Immunoprecipitations (IPs) were carried out over-
night at 4°C using the following antibodies: α-GFP rabbit
polyclonal antibody for Cdc45-YFP (gift from the Nurse Lab), α-
Rad52/Rad22 (Ab63800; Abcam), and α-HA for Ssb1-HA (12CA5;
Roche). Protein G sepharose beads (GE Healthcare) were then add-
ed to the samples and incubated for 4 h at 4°C. IPs were then
washed and eluted, and crosslinking was reversed for both IP
and Input samples by incubation at 65°C overnight. For quantita-
tive PCR, IP and Input DNA were mixed with SYBR Green qPCR
Master Mix (Agilent Technologies) and processed with an ABI
7900 HT. Primers used in this study are listed in Supplemental
Table S7.

Origin mapping experiments and analyses

Competitive hybridizations of differentially labeled samples
were performed using Agilent 4x44K S. pombe arrays (60-mer
probes every∼250 nucleotides [nt]; Agilent Technologies) as previ-
ously described (Wu and Nurse 2014). Briefly, copy number
was determined by comparing genomic DNA samples from
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nonreplicating cells and from cells undergoing DNA replication in
hydroxyurea. HU treatment limits the extension of DNA synthesis
around the sites of initiation, allowing the identification of replica-
tion origins. This method has been validated in previous studies
(Heichinger et al. 2006; Wu and Nurse 2014) and provides very
similar origin maps to those obtained with other approaches
(Hayashi et al. 2007; Daigaku et al. 2015). In cdc25-22 experiments,
6 mM HU was added 5 min after cells were released from the G2
arrest; samples were taken at this time and after a time when cells
would normally have completed S phase in the absence of HU (90
min). For nda3-km311, 6 mM HU was added 5 min after cells were
released frommitotic arrest; samples were taken just before the re-
lease and 80 min after release.

Genomic DNA was extracted (Hoffman and Winston 1987)
and purified using the Qiagen Genomic DNA kit. Samples were la-
beled using the BioPrime Plus Array CGH Indirect Genome
Labeling kit (Invitrogen) according to the manufacturer’s instruc-
tions with either Alexa 555/647 (Agilent Technologies) or Cy3/
Cy5 (GE Healthcare) dyes. One to two micrograms of labeled
DNA from the unreplicated and S phase samples were hybridized
onto the microarrays. Two independent hybridizations of the
same samples were systematically performed in a dye-swap exper-
iment, the ratios of replicating DNA to unreplicated DNA were as-
sessed, and these data sets were averaged. To determine copy
number, the geometric means over five consecutive probes were
determined across the genome. Outliers were identified and re-
moved prior to origin assignment.We averaged three biological re-
peats for cdc25-22 vs. cdc25-22 rad3Δ aswell as for cdc25-22 rif1Δ vs.
cdc25-22 rif1Δ rad3Δ; two biological repeats were used for the nda3-
km311 vs. nda3-km311 rad3Δ comparison. To obtain origin effi-
ciencies, the lowest ratios, which represent nonreplicated DNA (a
small proportion of the genome in 6 mM HU), were adjusted to
be centered on a value of 1. This resulted in a correction of 0.25
for all data sets. The application of this correction was further val-
idated by visual inspection of the overall profiles. Copy number
was converted to efficiency (for example, 1.5 = 50%), which repre-
sents the frequency of firing of a given origin in a population of
cells. Supplemental Tables S1–S5 provide information regarding
origin positions and efficiencies in our experimental conditions.
Additional details of our analyses of origin efficiencies and the se-
lection of de-regulated origins are provided in the Supplemental
Methods and in Supplemental Figures S7–S9.

ChIP-chip analysis

For ChIP-chip assays, 150 mL of cells were collected after release
from G2 arrest at either 60 min or 80 min for Ssb1/RPA and at 60
min or 90 min for Rad52. ChIPs were performed as described
above. For amplification of the ChIP material and labeling for hy-
bridization, the protocol from van Bakel et al. (2008) was used ac-
cording to Wu and Nurse (2014). Each ChIP was then hybridized
against its reciprocally labeled Input sample (IP/Input). For HU-
treated cdc25-22 and cdc25-22 rad3Δ cells, three biological repeats
were performed for RPA and Rad52. Two biological repeats were
performed for Rad52 in HU-treated cdc25-22 rif1Δ and cdc25-22
rif1Δ rad3Δ. For all Rad52 experiments in the absence of HU, two
biological repeats were performed.

For all quantitative analyses (measurement of binding at ori-
gins, heat maps, average signal plots, and selection of binding
sites), probe values were used directly. For visual representation
in Figures 2A, 3A, and 6A as well as Supplemental Figures S2B, S3,
B andG, and S6, B andD, themoving geometricmeans of five con-
secutive probes were calculated across the genome and plotted.

To identify peaks of RPA or Rad52 recruitment, we designated
a position as a binding site only when three consecutive probes

showed values higher than our thresholds. For RPA, we established
a cutoff of 2.0 based on the values of IP/Input for all the probes in a
wild-type background after calculating the dispersion of the data
from the median. Values were divided into quartiles, and as RPA
only binds to specific sites, we considered that the median value
of the data set represents the unbound DNA and that significant
binding occurs onlywhen the values are 1.5 times the interquartile
range (IQR) above the third quartile (Q3 + 1.5[IQR] = 1.84). This
cutoff excludes low levels of RPA that are part of the normal repli-
cation process. For Rad52, a threshold of 1.5 for IP/Inputwas estab-
lished. This was based on the distribution of the signal IP/Input for
all the probes in a wild-type background, after calculating the dis-
persion of the data from the median (Q3 + 1.5[IQR] = 1.48). We
considered RPA and Rad52 sites to colocalize with an origin if
they occurred within a distance of <3 kb.

Quantitative and statistical analyses

For the quantitative analyses in Figures 2, D and E, 3, C and D, and
6C as well as in Supplemental Figures S2C–F, S3D–F, S4, and S6C,
the levels of RPA and Rad52 recruitment were determined as fol-
lows: For each origin, we took the two probes closest to the origin
position and identified the larger value for either RPA or Rad52
binding. This was then used as the occupancy at that origin. Statis-
tics were performed with RStudio (RStudio Team 2015). The corre-
lations in Figure 4 and Supplemental Figure S4 were tested using
Spearman’s rank correlation coefficient. The correlations in Sup-
plemental Figure S9A were tested using the Pearson correlation
coefficient.

The heat maps in Figures 2, B and C, 3B, and 6B, and Supple-
mental Figure S3C were generated using RStudio (RStudio Team
2015). Levels of RPA and Rad52 binding were converted to a log2
scale. Origins were then aligned on a central position, and the
log2 values within a distance of −100 to +100 probes from this po-
sition were plotted. For visualization, log2 values <0.5 were as-
signed a value of 0. For the average signal plots in Figures 2D and
3C, the means of the values were calculated for a distance from
−100 to +100 probes centered on the origins.

Data access

All microarray data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE98462.
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